Fast calculation of Laurent expansions for matrix inverses

نویسنده

  • Bengt Fornberg
چکیده

Previously described algorithms for calculating the Laurent expansion of the inverse of a matrix-valued analytic function become impractical already for singularity orders as low as around p = 6, since they require over O(28) matrix multiplications and correspondingly large amounts of memory. In place of using mathematically exact recursions, we show that, for floating point calculations, a rational approximation approach can avoid this cost barrier without any significant loss in accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perturbation of Null Spaces with Application to the Eigenvalue Problem and Generalized Inverses

We consider properties of a null space of an analytically perturbed matrix. In particular, we obtain Taylor expansions for the eigenvectors which constitute a basis for the perturbed null space. Furthermore, we apply these results to the calculation of Puiseux expansion of the perturbed eigenvectors in the case of general eigenvalue problem as well as to the calculation of Laurent series expans...

متن کامل

Calculation of One-dimensional Forward Modelling of Helicopter-borne Electromagnetic Data and a Sensitivity Matrix Using Fast Hankel Transforms

The helicopter-borne electromagnetic (HEM) frequency-domain exploration method is an airborne electromagnetic (AEM) technique that is widely used for vast and rough areas for resistivity imaging. The vast amount of digitized data flowing from the HEM method requires an efficient and accurate inversion algorithm. Generally, the inverse modelling of HEM data in the first step requires a precise a...

متن کامل

Fast System Matrix Calculation in CT Iterative Reconstruction

Introduction: Iterative reconstruction techniques provide better image quality and have the potential for reconstructions with lower imaging dose than classical methods in computed tomography (CT). However, the computational speed is major concern for these iterative techniques. The system matrix calculation during the forward- and back projection is one of the most time- cons...

متن کامل

New results on the quasi-commuting inverses

A matrix has an ordinary inverse only if it is square, and even then only if it is nonsingular or, inother words, if its columns (or rows) are linearly independent. In recent years needs have been felt innumerous areas of applied mathematics for some kind of partial inverse of a matrix that is singularor even rectangular. In this paper, some results on the Quasi-commuting inverses, are given an...

متن کامل

On the duality of quadratic minimization problems using pseudo inverses

‎In this paper we consider the minimization of a positive semidefinite quadratic form‎, ‎having a singular corresponding matrix $H$‎. ‎We state the dual formulation of the original problem and treat both problems only using the vectors $x in mathcal{N}(H)^perp$ instead of the classical approach of convex optimization techniques such as the null space method‎. ‎Given this approach and based on t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 326  شماره 

صفحات  -

تاریخ انتشار 2016